

Class Q7 15

Evaluate

1)
$$\int_{-1}^{1} \chi_{100} d\chi = \frac{\chi_{101}}{\chi_{101}} |\chi_{101}| = 3 \times \chi_{101} |\chi_{10$$

Fundamental Theorem For Calculus Part I:

$$\frac{d}{dx} \int_{a}^{x} \int_{a}^{t} f(t) dt = f(x) \quad \text{for all } a \le x \le b$$

1) find
$$\frac{d}{dx} \int_{1}^{x} \frac{t}{1+t^3} dt = \frac{x}{1+x^3}$$

2) Sind
$$\frac{d}{dx} \int_{2}^{x} \frac{t^{2}}{1 + (o^{2}(x^{3}))} dt = \frac{x^{2}}{1 + (o^{2}(x^{3}))}$$

Now
$$\frac{d}{dx} \int_{u(x)}^{u(x)} f(t)dt = f(v(x)) \cdot v(x) - f(u(x)) \cdot v(x)$$

$$\int f(u(x)) \cdot v(x)$$

$$\int f(u(x)) \cdot v(x)$$

$$\int f(u(x)) \cdot v(x) - f(x)$$

$$\int f(u(x)) \cdot v(x)$$

$$\int f(u(x))$$

Sind
$$\frac{d}{dx}$$
 $\int_{0}^{2} \frac{dx}{dx} dx$

$$= \cos(x^{2})^{2} \cdot (2x) - \cos(x^{2})^{2} \cdot (2x^{2})$$

$$= 2x \cos x^{4} - \frac{\cos x}{2\sqrt{x}}$$

Gaiven
$$f(x) = \int_0^{\infty} (1-t^2) \cos^2 t \, dt$$

Find the interval where $f(x)$ is increasing. Where $f'(x) > 0$

$$f'(x) = \frac{d}{dx} \int_0^{\infty} (1-t^2) \cos^2 t \, dt$$

$$= (1-x^2) \cos^2 x \cdot 1 - 0$$

$$f'(x) = (1-x^2) (\cos^2 x \cdot 1 - 0)$$

$$f'(x) = (1-x^2) (\cos^2 x) \cdot 1 - 0$$

$$f'(x) = (1-x^2) (\cos^2 x) \cdot 1 - 0$$
Function $f(x)$ is increasing where $f'(x) > 0$

Discuss the Concavity for the Sunction
$$f(x) = \int_{0}^{x} \frac{t^{2}}{t^{2}+t+2} \frac{dt}{dt}.$$
Awe need
$$f'(x) = \frac{x^{2}}{x^{2}+x+2} \cdot 1 - \frac{0^{2}}{0^{2}+0+2} \cdot 0$$

$$f'(x) = \frac{x^{2}}{x^{2}+x+2} \cdot 1 - \frac{0^{2}}{0^{2}+0+2} \cdot 0$$

$$f'(x) = \frac{2x(x^{2}+x+2)}{2^{2}+x+2} \cdot x^{2}(2x+1)$$

$$(x^{2}+x+2)^{2}$$

$$= \frac{2x(x^{2}+x+2)}{(x^{2}+x+2)^{2}} \cdot \frac{x^{2}+4x}{(x^{2}+x+2)^{2}}$$

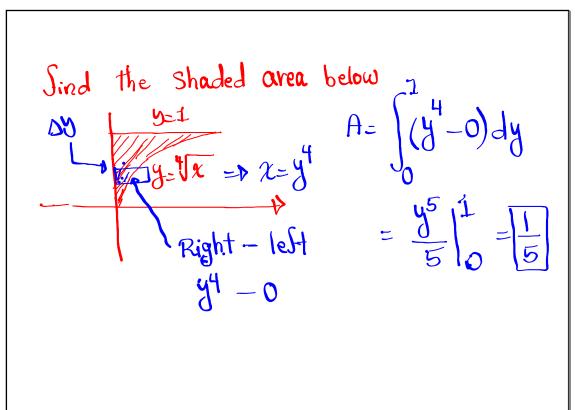
$$= \frac{x(x+4)}{(x^{2}+x+2)^{2}} \cdot \frac{x^{2}}{(x^{2}+x+2)^{2}}$$

$$= \frac{x(x+4)}{(x^{2}+x+2)^{2}} \cdot \frac{x^{2}}{(x^{2}+x+2)^{2}}$$
at $x = 4$ $x = 0$

Sind the Shaded area below

Top-Bottom

$$y=1$$
 $x=1$
 $y=1$
 $y=$



Find the area enclosed by
$$x=0$$
, $x=1$,
$$y=x^2+1$$
, and $y=x$.
$$A=\int_0^1 x^2+1-x \, dx$$

Find the avea enclosed by

$$y = \sqrt{x-1}$$
 and $x-y=1$. $\frac{x+y}{0-1}$
 $y=\sqrt{x-1}$
 $y=\sqrt{x-1}$

i) between
$$\int_{2}^{8} f(x) dx = 10$$
, $\int_{8}^{2} f(x) dx = 10$

a) $\int_{5}^{6} f(x) dx = \int_{8}^{2} f(x) dx = 10$

$$y = \sqrt{x-1} \quad y^{2} = x-1$$

$$x = y^{2} + 1$$

$$(2,1) \quad x = y + 1$$

$$A = \int_{0}^{1} \left[y+1 - (y^{2}+1) \right] dy$$

$$= \int_{0}^{1} \left[y - y^{2} \right] dy = \left(\frac{y^{2}}{2} - \frac{y^{3}}{3} \right) \left[\frac{1}{2} - \frac{1}{3} - \frac{1}{6} \right]$$